
© 2020 JETIR November 2020, Volume 7, Issue 11 www.jetir.org (ISSN-2349-5162)

JETIR2011343 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 417

Solving Constraint Satisfaction Problem in TSP

using GA and DFS algorithms

Md. Borhan Uddin

M.Sc. in Computer Science and Engineering

United International University

Dhaka, Bangladesh

Taki Uddin

M.Sc. in Computer Science and Engineering

United International University

Dhaka, Bangladesh

Abstract— Producing optimal tours in linear time through

human subjects one of the most intensively studied problems in

the area of optimization and the Traveling Salesman Problem

(TSP) is a popular example of such optimization. The

performance of TSP can be modeled by a graph, matrix, and

different types of algorithms. The most frequently seen TSP

problems are computer wiring, vehicle routing, job sequencing,

combinatorial data analysis. The optimization problem of TSP

is to find the salesman’s route from a specific location and back,

where each city will be visited once. If there are fewer cities then

it is easy to solve and the complexity increases exponentially as

the number of cities increases. The total distance and cost of

other resources incurred should all be minimum. Our paper

addresses the Constraint Satisfaction Problem (CSP) in TSP

using Depth-First Search (DFS) and Genetic Algorithm (GA) to

find a better solution and comparing the efficiency of both

algorithms. Our result shows the GA performs better at solving

TSP compared to DFS.

Keywords—genetic algorithm, depth-first search, constraint

satisfaction problem, traveling salesman problem, ant colony

optimization

I. INTRODUCTION

CSP is defined with a set of variables that satisfy some
conditions or constraints of our problem. It represents
variables, conditions, and values or domains. In simple terms,
it requires solutions under certain constraints.

Some of the problems such as shortest path algorithm,
minimum spanning tree, depth-first search optimal stopping
algorithm, genetic algorithm, etc. generalize the performance
of TSP problem where optimization tasks like perception,
decision making are important. It is a problem where the
distance between cities and the position of cities is accurately
known and the problem solver determines the nearly optimal
route.

The DFS is a type of search algorithm that uses stacks to
locate all the nodes. The method of DFS to find unvisited
nodes simplifies the discoverability of best routes. We use this
algorithm as our search algorithm using the data structure
stack and backtracking method to evaluate each vertex that has
not been visited. It is used to check each path to find the
longest path in a graph.

The genetic algorithm belongs to the evolutionary
algorithm class. It starts with different problem solutions that
are encoded into the population, a fitness function is applied
to determine the fitness of each generation, and after that, a
new generation is generated via the selection, crossover, and
mutation process. An optimal solution will be obtained after
the termination of the genetic algorithm. If the completion
condition is not met, the algorithm will proceed with the
particular host.

We chose these two algorithms as DFS has low time
complexity as it just finds the most efficient route from a given

set of nodes and on the other hand GA creates multiple
iterations and patterns from the given nodes to find the most
efficient solution for TSP.

II. RELATED WORKS

Scott Graham in 2000 modeled an algorithm [22] and
solved the visual version of TSP on human problem solving as
the first study where the optimal tours were shorter than the
subject’s tour in “The traveling salesman problem: A
hierarchical model”. Here, the problem was solved producing
a sequence of search and top-down steps by which the
computational complexity made very low. Ivan Brezina in
2011 discussed a problem named ant colony optimization [27]
which showed the techniques of group evolution in “Solving
the Travelling Salesman Problem using Ant Colony
Optimization” to find out the approach in the application.

Sheila Eka Putri in 2011 published a paper [6] to determine
the longest path in a given list of nodes based on the size of
the list.

A web application in 2012 named “The Project Spot”
solved the TSP using a method of elitism and tournament [35].
The elitism method is for checking fitness and the tournament
saving each tour/route.

These last two related topics inspired us to find algorithms
to solve TSP and compare performance between the shortest
path in the fastest time and the best tour/route in a finer
accuracy.

III. TRAVELING SALESMAN PROBLEM

The TSP is one such problem example of a constraint
satisfaction problem which has no exact algorithm for solving.
The solving purpose of this problem is to get an optimal
solution in minimal time. It can be represented through
undirected labeled graphs such that the vertices are the cities,
edges will be the path and edge length will be the distance
between cities. The problem will be minimized when it will
specify the first and last vertex and will visit each vertex only
for once. When there will be no path existing to be explored
between two cities, a lengthy arbitrary edge will represent a
complete graph without affecting the optimal route.

In our traveling salesman problem, we denote a set of
cities, c as {c1, c2, c3, …cn} where n is the number of cities. All
the permutations, p of the tours is denoted as {p1, p2, p3, …pn!}.
Our objective is to choose a permutation of the route between
source, s, and destination, c which is most cost-effective.

In this paper, we utilize two algorithms to solve the
traveling salesman problem. The first one is a depth-first
search and the other one is a genetic algorithm. The link to our
code both of the algorithms hosted on Colaboratory which can
be found here.

http://www.jetir.org/
https://colab.research.google.com/drive/181RzWTYIvDGWoVmhbHCQ6FoFNcszBATf?usp=sharing

© 2020 JETIR November 2020, Volume 7, Issue 11 www.jetir.org (ISSN-2349-5162)

JETIR2011343 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 418

IV. TSP USING DEPTH FIRST SEARCH

Using DFS, we traverse the nodes to find all paths for a
given source and destination. In doing so, we stored the
explored path in an array and marked each vertex that has been
explored. In this way, we find all the possible paths from least
expensive to most expensive for a traveling salesman to go
from source to destination.

Fig. 1. Flowchart for all possible path search in DFS

The depth-first search algorithm for our traveling salesman
problem is described in the flowchart in the figure. 1. We start
with taking source and destination as input. The unexplored or
unvisited nodes are analyzed and explored recursively. All the
possible nodes are analyzed and paths generated are stored or
printed. The output of the flowchart is the possible paths for
our traveling salesman.

Fig. 2. Graph vertices and edge values (cost) in a map

The figure above represents the seven major cities of
Bangladesh as vertices and the distance as edges. We
represented the distance between the vertices as a weighted
cost, that a traveling salesman could incur when traveling from
a given source to destination. All printed all the possible paths
between source and destination. These paths span from the

shortest path (least expensive) to the longest path (most
expensive).

The city nodes, c is defined in a graph array where each
node connection is also defined. The source and destination
nodes are defined as u and v respectively. We stored the
permutations, p as a path array.

TABLE I. PSEUDOCODE FOR FINDING ALL POSSIBLE PATHS

Procedure dfs()

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

graph[]

input source, destination
class Graph

 initialize()

 addEdge()
 printAllPathsUtil()

 if visited == true then

 add to path[]

 end

 if source == destination then

 print path_array

 end

 if visited == false then

 printAllPathsUtil()

 end

 printPath()
 visited == false

 printAllPathsUtil()

V. GENETIC ALGORITHM FOR TSP

The genetic algorithm is influenced through a mechanism
that facilitates the origin of species which is also considered as
heuristic search. It is intended to replicate the process of
natural selection to generate such as the existence of the fittest
of creatures. The algorithm follows the steps which are the
emergence of population creation, fitness calculation, best
genes selection, crossing over, the mutation for introducing
diversity. Different types of the optimization problem can be
solved with the implementation of this algorithm where
traveling sales problem is one of them. The shortest route
needs to find by a salesman in a given city where the person
will visit every city for once and after that, he will come back
to the starting city.

In our algorithm, cities are considered as genes, and the
chromosome is defined based on the characteristics of string
generation. The cities path length is equal to the fitness score
for targeting the population. The path length of a gene is
defined as a fitness score which will work basis on the fitter
length of the gene where the path is lesser. In the gene pool,
the fittest of genes survive for the population evaluation and
pass to the next iteration where the iteration varies upon the
cooling variable. The cooling variable’s value decreases
matching with iteration and after certain times of iterations, it
reaches the threshold.

http://www.jetir.org/

© 2020 JETIR November 2020, Volume 7, Issue 11 www.jetir.org (ISSN-2349-5162)

JETIR2011343 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 419

Fig. 3. Flowchart for best path search in GA

The traveling salesman problem is described with a genetic
algorithm while solving our algorithm where the population is
initialized randomly and the fitness of the chromosome is
determined. Parents selection, crossover and mutation
execution, new population’s fitness calculation, and the
appendication to gene pool need to run repeatedly while
getting the outcome.

The function gene_mutate() creates two-parent genes
using the crossover method. If we consider that we have 3
cities [1, 2, 3]. And the salesman wants to travel all the cities
starting from city1 through the shortest route and back to city1
[1, 2, 3, 1]. Taking this as a list of chromosomes and mutating
it but keeping the start and endpoint unchanged, gives us a
mutated child chromosome. The parameters we used are v,
genes to denote the size of our graphs, and the names of our
nodes respectively. The variables start and pop_size defines
the source of the traveling salesman route and the desired
population size (possible routes). A variable gen_thres sets the
number of iterations we would like to run for our program. The
TSPUtil() function runs iteratively (gen_thres) to find all the
possible routes and their fitness from the list of given genes.

TABLE II. PSEUDOCODE FOR FINDING ALL POSSIBLE PATHS

Procedure ga()

1

2

3

4

5

6

7

population[][]

 random_number()
 repeat()

 if character == string then

 return true
 return false

 gene_mutate()

8

9

10

11

12

13

14

15

 if parent1!= parent2 then

 return gnome
 create_gnome()

 fitness_calculate()

 map[][]

 return fitness

 cooldown()

 tsp_util()

VI. RESULTS AND OUTCOME

Our result for the DFS algorithm shows, the shortest
possible paths for TSP. We set an environment for our
algorithm providing the number of nodes and their connected
edges. The algorithm takes source s and destination d as the
input parameters. Once the code is run the pseudo code from
TABLE I is executed. For initialization, our code takes the graph
of seven divisions of Bangladesh denoted by numbers [0, 1, 2,
3, 4, 5, 6]. Now, for instance, if we provide an input of s = 3
and d = 5, the output with the pseudo-code gives us all the
possible paths.

Fig. 4. The output of the DFS algorithm

With our pseudocode, we get the shortest and most efficient
path for the given source and destination which is [3, 5] as
shown in Fig. 4 which is also supported by our cost distribution
from Fig. 2.

Fig. 5. The output of GA for TSP

On the other hand, our GA shows the best possible order
of nodes with the same graph. Our population size is defined
randomly, with each iteration a better value of path is found
for the TSP.

In GA, we specify the number of cities v = 7, the
population size pop_size = 10 and the number of iteration
gen_thres = 2. On running the program, the pseudo-code from
TABLE II is executed. Due to the gen_thres parameter set to 2,
our output gives us two iterations of 10 (pop_size) new best
paths for TSP. But due to the randomness as mentioned earlier,
the iterative path cannot be supported by the graph in Fig. 2.

TABLE III. COMPARISON FOR TSP: DFS AND GA WITH ANT COLONY OPTIMIZATION

Algorithm Parameter Function Process Results Remarks

Depth First

Search

Source,
destination

addEdge(), printAllPaths(),
printAllPathsUtil()

Analyze number of nodes in an

array, explore array size (nodes),
record visited node or keep

exploring unvisited node

All possible paths
of nodes

Source and

destination
can’t be the

same

Genetic

Algorithm

Number of

nodes, start,
iteraion

TSPUtil(), cooldown(),
lessthan(), cal_fitness(),

create_gnome(), mutatedGene(),

repeat()

Initialize nodes, crossover

between sets of parents, selection
of child node, check if number of

iterations is completed, record

selected nodes or undergo
mutation and crossover again

Source to

destination (same)

possible
combination of

nodes

The weight of

the graph isn’t
established

Ant Colony

Optimization

Source,
destination

AntSolutionConstruction(),

fitnessTest(),

pheromoneUpdate(), repeat()

Initialize nodes, randomize path

order, fitness calculation, update

pheromone, run iteraion

Source to

destination

possible

Weight and

graph isn’t

defined

http://www.jetir.org/

© 2020 JETIR November 2020, Volume 7, Issue 11 www.jetir.org (ISSN-

2349-5162)

JETIR2011343 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 420

combination of

nodes

VII. CONCLUSION AND FUTURE SCOPE

In the DFS algorithm, our limitations were that the source
and destination were not the same. These led to partial solving
of TSP and hence no fitness scale. Though our algorithm still
found the shortest route from a given source to destination.

Crossing over and mutation methods are used which helps
to find out a good solution for TSP in GA. This approach is
helpful for few models like the vehicle navigation model,
networking model task scheduling model, cellular network
frequency allocation. In our DFS we were able to denote a
graph of cities to find the shortest route. However, in our
algorithm (GA) no such graph was established.

For our future scope, a merging between both the
algorithms to find the best shortest path (DFS) from the fittest
order of nodes (GA).

ACKNOWLEDGMENT

We are thankful to Dr. Swakkhar Shatabda, Associate
Professor, United International University for his helpful
feedback on the paper and suggestions for improvements.

REFERENCES

[1] Haxhimusa, Yll & Carpenter, Edward & Catrambone, Joseph & Foldes,

David & Stefanov, Emil & Arns, Laura & Pizlo, Zygmunt. (2011). 2D
and 3D Traveling Salesman Problem. The Journal of Problem Solving.

3. 10.7771/1932-6246.1096.

[2] Gupta, Saloni & Panwar, Poonam. (2013). Solving Travelling
Salesman Problem Using Genetic Algorithm. International Journal of

Advanced Research in Computer Science and Software Engineering. 3.

376-380.

[3] Muneeb Abid, Malik & Iqbal, Muhammad. (2015). Heuristic

Approaches to Solve Traveling Salesman Problem. TELKOMNIKA

Indonesian Journal of Electrical Engineering. 15. 390-396.
10.11591/telkomnika.v15i2.8301.

[4] Gharote, Mangesh & Thomas, Dilys & Lodha, Sachin. (2015).

Travelling Salesman Problem (TSP) - Presentation.
[5] Mijwil, Maad. (2016). Traveling Salesman Problem Mathematical

Description.

[6] Putri, Sheila Eka & Tulus, Tulus & Napitupulu, Normalina. (2011).
Implementation and Analysis of Depth-First Search (DFS) Algorithm

for Finding The Longest Path. 10.13140/2.1.2878.2721.

[7] Mastan, Shaik & Balakrishnan, U. & Raju, G.. (2019). A Quick
Heuristic Algorithm for Traveling Salesman Problem. SSRN Electronic

Journal. 10.2139/ssrn.3497489.

[8] Weyland, Dennis & Bianchi, Leonora & Gambardella, Luca Maria.
(2009). New Heuristics for the Probabilistic Traveling Salesman

Problem.

[9] Maha, Al-Furhud & Ahmed, Zakir. (2020). Genetic Algorithms for the

Multiple Travelling Salesman Problem. International Journal of

Advanced Computer Science and Applications. 11. 553-560.

10.14569/IJACSA.2020.0110768.
[10] Burkard, Rainer & Deineko, Vladimir & Woeginger, Gerhard. (1998).

The Travelling Salesman Problem on Permuted Monge Matrices.

Journal of Combinatorial Optimization. 2. 333-350.
10.1023/A:1009768317347.

[11] Bang, Jeongho & Yoo, Seokwon & Lim, James & Ryu, Junghee & Lee,

Changhyoup & Lee, Jinhyoung. (2010). A Quantum Heuristic
Algorithm for the Traveling Salesman Problem. Journal- Korean

Physical Society. 61. 10.3938/jkps.61.1944.
[12] Mastan, Shaik. (2019). Heuristics Designed For the Traveling Salesman

Problem. 7. 209-213.

[13] Putponpai, Jutathip & Pongchairerks, Pisut. (2014). A Problem-Based
Heuristic for Asymmetric Travelling Salesman Problems. Journal of

Industrial and Intelligent Information. 3. 10.12720/jiii.3.3.258-265.

[14] Brest, Janez & Zerovnik, Janez. (2005). A heuristic for the asymmetric
traveling salesman problem.

[15] Gutin, Gregory & Zverovitch, Alexei & Blokh, David. (2008). A

Heuristic for the Resource-Constrained Traveling Salesman Problem.

[16] Pankratova, Yaroslavna & Tarashnina, Svetlana. (2017). On A

Dynamic Traveling Salesman Problem.
[17] Flip, Phillips & Thomas, O'Connell & Oliver, Layton. (2010). The

Traveling Salesman Problem in the Natural Environment. Journal of

Vision. 9. 10.1038/npre.2010.4960.1.
[18] Li, Jun & Sun, Qirui & Zhou, Mengchu & Xiaolong, yu. (2014).

Colored Traveling Salesman Problem and Solution. IFAC Proceedings

Volumes (IFAC-PapersOnline). 19.
[19] Alkaya, Ali & Duman, Ekrem. (2010). A new generalization of the

Traveling salesman problem. Applied and Computational Mathematics.

9. 162-175.
[20] Gutin, Gregory & Punnen, Abraham & Barvinok, Alexander & Gimadi,

E. & Serdyukov, Anatoliy. (2001). The Traveling Salesman Problem

and Its Variations.
[21] Sánchez, Sergio & Cocho, Germinal & Flores, Jorge & Gershenson,

Carlos & Iñiguez, Gerardo & Pineda, Carlos. (2017). Trajectory

Stability in the Traveling Salesman Problem. Complexity. 2018.
10.1155/2018/2826082.

[22] Graham, Scott & Joshi, Anupam & Pizlo, Zygmunt. (2000). The

traveling salesman problem: A hierarchical model. Memory &
cognition. 28. 1191-204. 10.3758/BF03211820.

[23] Pekár, Juraj & Brezina, Ivan & Kultan, Jaroslav & Ushakova, Iryna &

Dorokhov, Oleksandr. (2020). Computer tools for solving the traveling
salesman problem. Development Management. 18. 25-39.

10.21511/dm.18(1).2020.03.

[24] Dinh, Lau & Chien, Tran. (2015). Traveling Salesman Problem in
Distributed Environment. Computer Science & Information

Technology. 5. 19-28. 10.5121/csit.2015.51503.
[25] Hu, Bin & Raidl, Gü & R, nther. (2008). Solving the Railway Traveling

Salesman Problem via a Transformation into the Classical Traveling

Salesman Problem. Proceedings - 8th International Conference on
Hybrid Intelligent Systems, HIS 2008. 73-77. 10.1109/HIS.2008.30.

[26] Lipowski, Adam & Lipowska, Dorota. (2005). Traveling salesman

problem with a center. Physical review. E, Statistical, nonlinear, and
soft matter physics. 71. 067701. 10.1103/PhysRevE.71.067701.

[27] Brezina, Ivan & Čičková, Zuzana. (2011). Solving the Travelling

Salesman Problem Using the Ant Colony Optimization. International
Scientific Journal of Management Information Systems. 6.

[28] Huiru, Ma & Jia, Limin & Xingchen, Zhang & Jianrui, Miao &

Jiandong, Sun. (2015). Travelling Salesman Problem in Uncertain
Environments. The Open Cybernetics & Systemics Journal. 9. 313-317.

10.2174/1874110X01509010313.

[29] Gharote, Mangesh & Thomas, Dilys & Lodha, Sachin. (2012). Excel
Solvers for the Traveling Salesman Problem.

[30] Silberholz, John & Raiconi, Andrea & Cerulli, Raffaele & Gentili,

Monica & Golden, Bruce & Chen, S.. (2013). Comparison of heuristics
for the colorful traveling salesman problem. International Journal of

Metaheuristics. 2. 141-173. 10.1504/IJMHEUR.2013.054143.

[31] Fortini, Matteo. (2020). LP-based heuristics for the Traveling Salesman
Problem.

[32] Váňa, Petr & Faigl, Jan. (2015). On the Dubins Traveling Salesman

Problem with Neighborhoods. 4029-4034.
10.1109/IROS.2015.7353945.

[33] Saad, Shakila & Wan Jaafar, Wan Nurhadani & Jamil, Siti. (2013).

Solving Standard Traveling Salesman Problem and Multiple Traveling

Salesman Problem by Using Branch-and-Bound. AIP Conference

Proceedings. 1522. 1406-1411. 10.1063/1.4801294.

[34] Martonák, Roman & Santoro, Giuseppe & Tosatti, Erio. (2004).
Quantum annealing of the Traveling Salesman Problem. Physical

review. E, Statistical, nonlinear, and soft matter physics. 70. 057701.

10.1103/PhysRevE.70.057701.
[35] Lee Jacobson (2012) Applying a genetic algorithm to the traveling

salesman problem. Retrieved from The Project Spot:

http://www.theprojectspot.com/tutorial-post/applying-a-genetic-
algorithm-to-the-travelling-salesman-problem/5

[36] Whitley, Darrell & Ochoa, Gabriela. (2011). Partial neighborhoods of

the Traveling Salesman Problem. Genetic and Evolutionary
Computation Conference, GECCO'11. 529-536.

10.1145/2001576.2001649.

[37] Michail, Othon & Spirakis, Paul. (2014). Traveling Salesman Problems
in Temporal Graphs. Theoretical Computer Science. 553-564.

10.1007/978-3-662-44465-8_47.

[38] Hameed, Ibrahim. (2020). Multi-objective Solution of Traveling

Salesman Problem with Time. 10.1007/978-3-030-14118-9_13.

http://www.jetir.org/

© 2020 JETIR November 2020, Volume 7, Issue 11 www.jetir.org (ISSN-2349-5162)

JETIR2011343 Journal of Emerging Technologies and Innovative Research (JETIR) www.jetir.org 421

[39] Barach, Gilad & Fort, Hugo & Mehlman, Yoni & Zypman, Fredy.
(2020). Information in the Traveling Salesman Problem.

[40] Sangwan, Shabnam. (2018). Literature Review on Traveling Salesman

Problem. International Journal of Research. 5. 1152.
[41] Shahab, M. (2019). New heuristic algorithm for traveling salesman

problem. Journal of Physics: Conference Series. 1218. 012038.

10.1088/1742-6596/1218/1/012038.
[42] Mohanta, Susanta. (2019). On Optimal Solution for Traveling

Salesman Problem: Direct Approach. 14. 3226-3230.

[43] Barach, Gilad & Fort, Hugo & Mehlman, Yoni & Zypman, Fredy.
(2020). Information in the Traveling Salesman Problem.

[44] Hussain, Abid & Muhammad, Yousaf shad & Sajid, Nauman &

Hussain, Ijaz & Shoukry, Alaa & Gani, Showkat. (2017). Genetic
Algorithm for Traveling Salesman Problem with Modified Cycle

Crossover Operator. Computational Intelligence and Neuroscience.

2017. 10.1155/2017/7430125.
[45] Önder, Ilter. (2007). A Genetic Algorithm for TSP with Backhauls

based on Conventional Heuristics. 10.13140/RG.2.2.19401.80481.

[46] Rexhepi, Avni & Maxhuni, Adnan & Dika, Agni. (2013).
[47] Analysis of the impact of parameter values on the Genetic Algorithm

for TSP. International Journal of Computer Science Issues. Volume 10.

pp 158-164.
[48] Chudasama, Chetan & Shah, S.M. & Panchal, Mahesh. (2011).

Comparison of parents selection methods of genetic algorithm for TSP.

Proc. of the Int. Conf. on Computer Communication and Networks CSI-
COMNET-2011. 1. 102-105.

[49] Pratik Basu (2020) Introduction to Ant Colony Optimization. Retrieved

from GeeksforGeeks: https://www.geeksforgeeks.org/introduction-to-
ant-colony-optimization/

[50] Blum, Christian. (2007). Ant Colony Optimization: Introduction and

Hybridizations. Proceedings - 7th International Conference on Hybrid
Intelligent Systems, HIS 2007. 24 - 29. 10.1109/HIS.2007.36.

http://www.jetir.org/

